Kirchhof P, Sipido KR, Cowie MR, et al. The continuum of personalized cardiovascular medicine: a position paper of the European Society of Cardiology. Eur Heart J 2014;35(46):3250-7.
DOI: 10.1093/eurheartj/ehu312
Sharma A, Harrington RA, McClellan MB, et al. Using Digital Health Technology to Better Generate Evidence and Deliver Evidence-Based Care. J Am Coll Cardiol 2018;71(23):2680-90.
DOI: 10.1016/j.jacc.2018.03.523
WHO guideline Recommendations on Digital Interventions for Health System Strengthening. 2019; License: CC BY-NC-SA 3.0 IGO.
Frederix I, Caiani EG, Dendale P, et al. ESC e-Cardiology Working Group Position Paper: Overcoming challenges in digital health implementation in cardiovascular medicine. Eur J Prev Cardiol 2019;26(11):1166-77.
DOI: 10.1177/2047487319832394
Dey D, Slomka PJ, Leeson P, et al. Artificial Intelligence in Cardiovascular Imaging: JACC State-of-the-Art Review. J Am Coll Cardiol 2019;73(11):1317-35.
DOI: 10.1016/j.jacc.2018.12.054
Sardar P, Abbott JD, Kundu A, et al. Impact of Artificial Intelligence on Interventional Cardiology: From Decision-Making Aid to Advanced Interventional Procedure Assistance. JACC Cardiovasc Interv 2019;12(14):1293-303.
DOI: 10.1016/j.jcin.2019.04.048
Krittanawong C, Zhang H, Wang Z, et al. Artificial Intelligence in Precision Cardiovascular Medicine. J Am Coll Cardiol 2017;69(21):2657-64.
DOI: 10.1016/j.jacc.2017.03.571
Hahn S, Perry M, Morris CS, et al. Machine deep learning accurately detects endoleak after endovascular abdominal aortic aneurysm repair. JVS: Vascular Science 2020;1:5-12.
DOI: 10.1016/j.jvssci.2019.12.003
Poplin R, Varadarajan AV, Blumer K, et al. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat Biomed Eng 2018;2(3):158-64.
DOI: 10.1038/s41551-018-0195-0
Litjens G, Ciompi F, Wolterink JM, et al. State-of-the-Art Deep Learning in Cardiovascular Image Analysis. JACC Cardiovasc Imaging 2019;12(8 Pt 1):1549-65.
DOI: 10.1016/j.jcmg.2019.06.009
Ni JC, Shpanskaya K, Han M, et al. Deep Learning for Automated Classification of Inferior Vena Cava Filter Types on Radiographs. J Vasc Interv Radiol 2020;31(1):66-73.
DOI: 10.1016/j.jvir.2019.05.026
Toth D, Miao S, Kurzendorfer T, et al. 3D/2D model-to-image registration by imitation learning for cardiac procedures. Int J Comput Assist Radiol Surg 2018;13(8):1141-9.
DOI: 10.1007/s11548-018-1774-y
Chamaria S, Johnson KW, Vengrenyuk Y, et al. Intracoronary Imaging, Cholesterol Efflux, and Transcriptomics after Intensive Statin Treatment in Diabetes. Sci Rep 2017;7(1):7001-13.
DOI: 10.1038/s41598-017-07029-7
Hsu C-Y, Ghaffari M, Alaraj A, et al. Gap-free segmentation of vascular networks with automatic image processing pipeline. Comput Biol Med 2017;82:29-39.
DOI: 10.1016/j.compbiomed.2017.01.012
Hirata K, Nakaura T, Nakagawa M, et al. Machine Learning to Predict the Rapid Growth of Small Abdominal Aortic Aneurysm. J Comput Assist Tomogr 2020;44(1):37-42.
DOI: 10.1097/RCT.0000000000000958
Choi E, Schuetz A, Stewart WF, et al. Using recurrent neural network models for early detection of heart failure onset. J Am Med Inform Assoc 2017;24(2):361-70.
DOI: 10.1093/jamia/ocw112
Sinha I, Aluthge DP, Chen ES, et al. Machine Learning Offers Exciting Potential for Predicting Postprocedural Outcomes: A Framework for Developing Random Forest Models in IR. J Vasc Interv Radiol 2020;31(6):1018-24.e4.
DOI: 10.1016/j.jvir.2019.11.030
Park BJ, Hunt SJ, Martin C, et al. Augmented and Mixed Reality: Technologies for Enhancing the Future of IR. J Vasc Interv Radiol 2020;31(7):1074-82.
DOI: 10.1016/j.jvir.2019.09.020
Pratt P, Ives M, Lawton G, et al. Through the HoloLens™ looking glass: augmented reality for extremity reconstruction surgery using 3D vascular models with perforating vessels. Eur Radiol Exp 2018;2(1):2-7.
DOI: 10.1186/s41747-017-0033-2
Van Strijen MJL, Vos JA. Experience with new techniques for the treatment of type II endoleaks post-EVAR. J Cardiovasc Surg (Torino) 2014;55(5):581-92.
Radvany MG, Ehtiati T, Huang J, et al. Aortic arch injection with C-arm cone beam CT for radiosurgery treatment planning of cerebral arteriovenous malformations: technical note. J Neurointerv Surg 2012;4(5):e28-8.
DOI: 10.1136/neurintsurg-2011-010115
Vine SJ, Uiga L, Lavric A, et al. Individual reactions to stress predict performance during a critical aviation incident. Anxiety Stress Coping 2015;28(4):467-77.
DOI: 10.1080/10615806.2014.986722
Chrzanowski L, Drozdz J, Strzelecki M, et al. Application of neural networks for the analysis of intravascular ultrasound and histological aortic wall appearance-an in vitro tissue characterization study. Ultrasound Med Biol 2008;34(1):103-13.
DOI: 10.1016/j.ultrasmedbio.2007.06.021
Mendizábal-Ruiz EG, Biros G, Kakadiaris IA. An inverse scattering algorithm for the segmentation of the luminal border on intravascular ultrasound data. Med Image Comput Comput Assist Interv 2009;12(Pt 2):885-92.
DOI: 10.1007/978-3-642-04271-3_107
Chi W, Liu J, Rafii-Tari H, et al. Learning-based endovascular navigation through the use of non-rigid registration for collaborative robotic catheterization. Int J Comput Assist Radiol Surg 2018;13(6):855-64.
DOI: 10.1007/s11548-018-1743-5
Tercero C, Ikeda S, Uchiyama T, et al. Autonomous catheter insertion system using magnetic motion capture sensor for endovascular surgery. Int J Med Robot 2007;3(1):52-8.
DOI: 10.1002/rcs.116
Wen R, Tay W-L, Nguyen BP, et al. Hand gesture guided robot-assisted surgery based on a direct augmented reality interface. Comput Methods Programs Biomed 2014;116(2):68-80.
DOI: 10.1016/j.cmpb.2013.12.018
Zhao Y, Guo S, Wang Y, et al. A CNN-based prototype method of unstructured surgical state perception and navigation for an endovascular surgery robot. Med Biol Eng Comput 2019;57(9):1875-87.
DOI: 10.1007/s11517-019-02002-0
Hadjianastassiou VG, Tekkis PP, Athanasiou T, et al. Comparison of mortality prediction models after open abdominal aortic aneurysm repair. Eur J Vasc Endovasc Surg 2007;33(5):536-43.
DOI: 10.1016/j.ejvs.2006.11.016
Monsalve-Torra A, Ruiz-Fernández D, Marín-Alonso O, et al. Using machine learning methods for predicting inhospital mortality in patients undergoing open repair of abdominal aortic aneurysm. J Biomed Inform 2016;62:195-201.
DOI: 10.1016/j.jbi.2016.07.007
Wise ES, Hocking KM, Brophy CM. Prediction of in-hospital mortality after ruptured abdominal aortic aneurysm repair using an artificial neural network. J Vasc Surg 2015;62(1):8-15.
DOI: 10.1016/j.jvs.2015.02.038
Luebke T, Majd P, Mylonas SN, et al. Artificial neural network for prediction of in-hospital mortality after open repair of ruptured abdominal aortic aneurysm. J Cardiovasc Surg (Torino) 2017;58(5):794-6.
Attallah O, Ma X. Bayesian neural network approach for determining the risk of re-intervention after endovascular aortic aneurysm repair. Proc Inst Mech Eng H 2014;228(9):857-66.
DOI: 10.1177/0954411914549980
Karthikesalingam A, Attallah O, Ma X, et al. An Artificial Neural Network Stratifies the Risks of Reintervention and Mortality after Endovascular Aneurysm Repair; a Retrospective Observational study. PLoS ONE 2015;10(7):e0129024.
DOI: 10.1371/journal.pone.0129024
Attallah O, Karthikesalingam A, Holt PJ, et al. Using multiple classifiers for predicting the risk of endovascular aortic aneurysm repair re-intervention through hybrid feature selection. Proc Inst Mech Eng H 2017;231(11):1048-63.
DOI: 10.1177/0954411917731592
Ross EG, Shah NH, Dalman RL, et al. The use of machine learning for the identification of peripheral artery disease and future mortality risk. J Vasc Surg 2016;64(5):1515-22.e3.
DOI: 10.1016/j.jvs.2016.04.026
Wang W, Wang T, Wang Y, et al. Integration of Gene Expression Profile Data to Verify Hub Genes of Patients with Stanford A Aortic Dissection. Biomed Res Int 2019;2019(1, article 2):3629751-9.
DOI: 10.1155/2019/3629751
Zhang X, Liu F, Bai P, et al. Identification of key genes and pathways contributing to artery tertiary lymphoid organ development in advanced mouse atherosclerosis. Mol Med Rep 2019;19(4):3071-86.
DOI: 10.3892/mmr.2019.9961
Jordanski M, Radovic M, Milosevic Z, et al. Machine Learning Approach for Predicting Wall Shear Distribution for Abdominal Aortic Aneurysm and Carotid Bifurcation Models. IEEE J Biomed Health Inform 2018;22(2):537-44.
DOI: 10.1109/JBHI.2016.2639818
Huttunen JMJ, Kärkkäinen L, Lindholm H. Pulse transit time estimation of aortic pulse wave velocity and blood pressure using machine learning and simulated training data. PLoS Comp Biol 2019;15(8):e1007259.
DOI: 10.1371/journal.pcbi.1007259
Filipovic N, Ivanovic M, Krstajic D, et al. Hemodynamic flow modeling through an abdominal aorta aneurysm using data mining tools. IEEE Trans Inform Technol Biomed 2011;15(2):189-94.
DOI: 10.1109/TITB.2010.2096541
Perrin D, Demanget N, Badel P, et al. Deployment of stent grafts in curved aneurysmal arteries: toward a predictive numerical tool. Int J Numer Meth Biomed Engng 2015;31(1):e02698.
DOI: 10.1002/cnm.2698
Perrin D, Badel P, Orgéas L, et al. Patient-specific simulation of endovascular repair surgery with tortuous aneurysms requiring flexible stent-grafts. J Mech Behav Biomed Mater 2016;63:86-99.
DOI: 10.1016/j.jmbbm.2016.06.013
Savova GK, Fan J, Ye Z, et al. Discovering peripheral arterial disease cases from radiology notes using natural language processing. AMIA Annu Symp Proc 2010;2010:722-6.
Crowley RS, Castine M, Mitchell K, et al. caTIES: a grid based system for coding and retrieval of surgical pathology reports and tissue specimens in support of translational research. J Am Med Inform Assoc 2010;17(3):253-64.
DOI: 10.1136/jamia.2009.002295
Friedman C. A broad-coverage natural language processing system. Proc AMIA Symp 2000;270-4.